Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

New alcohol dehydrogenases for the synthesis of chiral compounds.

The enantioselective reduction of carbonyl groups is of interest for the production of various chiral compounds such as hydroxy acids, amino acids, hydroxy esters, or alcohols. Such products have high economic value and are most interesting as additives for food and feed or as building blocks for organic synthesis. Enzymatic reactions or biotransformations with whole cells (growing or resting) for this purpose are described. Although conversions with whole cells are advantageous with respect to saving expensive isolation of the desired enzymes, the products often lack high enantiomeric excess and the process results in low time-space-yield. For the synthesis of chiral alcohols, only lab-scale syntheses with commercially available alcohol dehydrogenases have been described yet. However, most of these enzymes are of limited use for technical applications because they lack substrate specificity, stability (yeast ADH) or enantioselectivity (Thermoanaerobium brockii ADH). Furthermore, all enzymes so far described are forming (S)-alcohols. Quite recently, we found and characterized several new bacterial alcohol dehydrogenases, which are suited for the preparation of chiral alcohols as well as for hydroxy esters in technical scale. Remarkably, of all these novel ADHs the (R)-specific enzymes were found in strains of the genus Lactobacillus. Meanwhile, these new enzymes were characterized extensively. Protein data (amino acid sequence, bound cations) confirm that these catalysts are novel enzymes. (R)-specific as well as (S)-specific ADHs accept a broad variety of ketones and ketoesters as substrates. The applicability of alcohol dehydrogenases for chiral syntheses as an example for the technical use of coenzyme-dependent enzymes is demonstrated and discussed in this contribution. In particular NAD-dependent enzymes coupled with the coenzyme regeneration by formate dehydrogenase proved to be economically feasible for the production of fine chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app