Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bone marrow stromal cell defects and 1 alpha,25-dihydroxyvitamin D3 deficiency underlying human myeloid leukemias.

Primary myelodysplasia (MDP) and acute and chronic myelogenous leukemias (AML, CML) are considered disorders of clonal stem cell division. Several constitutive gene defects that contribute to the development of abnormal cell behavior have been identified in the hematopoietic cells. The role of bone marrow stroma cells in leukemogenesis, however, has not been established. We studied the organization of the bone marrow (BM) microenvironment to see if it was impaired during the initiation and progression of these malignancies. The buffy coat, hematon, and plasma fractions were separated from BM aspirates taken from healthy donors and diseased subjects at distinct clinical stages. The structural integrity of the BM microenvironment was evaluated analyzing the morphogenetic unit, the hematon. The hematon is a multicellular complex that includes fibroblasts, adipocytes, endothelial cells, resident macrophages, hematopoietic cobblestone area-forming cells (CAFC), high-proliferative potential colony-forming cells (HPP-CFC), granulocyte-macrophage colony-forming unit (GM-CFU), burst-forming unit erythroid (BFU-E), and terminally differentiated cells in normal BM. Hematon complexes were present in most BM aspirates from healthy donors (46H+/55). But they were absent from most of the patients with MDP (21H+/62) and AML (5H+/24) in the first perceptible phase, and from those with CML throughout the disease (5H+/55). Hematon complexes were present in the BM aspirate in 22/36 AML patients at clinical remission after chemotherapy or differentiation therapy. The hematon fraction isolated from normal BM, contained 25 times more 25-hydroxyvitamin D3 and about 500-fold more 1alpha,25-dihydroxyvitamin D3 than the BM plasma. The concentration of 1alpha,25-dihydroxyvitamin D3 was low or undetectable in the BM plasma of some, but not all, patients with MDP (18/35) or AML (9/24). Thus, in the BM microenvironment, the metabolism of low-density lipids and lipophylic hormones are severely impaired prior to initiation or during the accelerated expansion of leukemia cells. The lack of organized stromal network and the decreased level of some lipophylic hormones, acting probably as morphogens, may contribute to the onset and progression of human myeloid leukemias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app