Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Production of reactive oxygen metabolites by opsonized fungi and bacteria isolated from indoor air, and their interactions with soluble stimuli, fMLP or PMA.

Changes in the levels of free intracellular calcium ([Ca2+]i) and the production of reactive oxygen metabolites (ROM) induced by opsonized indoor air fungi and bacteria in human polymorphonuclear leukocytes (PMNL) were measured. Moreover, modification of a chemotactic peptide (fMLP)-and a tumor promoter (PMA)-induced production of ROM by opsonized fungi and bacteria were studied. The cells were exposed to graded doses of opsonized Candida sp., Aspergillus sp., Cladosporium sp., Stachybotrys sp., Penicillium sp., Paecilomyces sp., or A4 or A91 Streptomyces sp. alone, or together with fMLP or PMA. All the organisms were isolated from air samples of mold-problem buildings. None of the fungi or bacteria induced changes in [Ca2+]i or the production of ROM without opsonization with human serum. Of all opsonized fungi and bacteria, only Candida sp. elevated [Ca2+]i. All fungi and bacteria, except Paecilomyces sp. and Stachybotrys sp., markedly increased the production of ROM in PMNL. Furthermore, A91 Streptomyces sp. and Aspergillus sp. amplified fMLP-induced production of ROM. Only Candida sp. increased PMA-induced phenomen that normally occurs in the lung, was required for biological activity of the fungi and bacteria. Amplification by opsonization of fungi- or bacteria-induced leukocyte activation revealed remarkable changes between these biologically active particles. The present results suggest that many indoor air fungi and bacteria may activate leukocytes to produce oxidative stress, perhaps associated with harmful effects in exposed individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app