Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast.

Diploid extraembryonic ectoderm and ectoplacental cone from the 7.5-day mouse embryo were grown in vitro under a variety of culture conditions in an attempt to discover conditions which maintain trophoblast in a diploid state and prevent giant-cell formation. It was found that maintenance of tissue integrity was not enough to keep the tissues dividing and diploid, but that the presence of inner-cell-mass derivatives did have some effect. This effect was only apparent when trophoblast cells were entirely enclosed by embryonic tissues. Monolayers of embryonic or embryonal carcinoma cells did not prevent giant-cell formation. Diploid extraembryonic ectoderm and ectoplacental cone responded differently: ectoplacental cells eventually formed trophoblast giant cells even when enclosed by embryonic cells whereas extraembryonic ectoderm cells apparently could be maintained in a diploid condition. This and other differences in properties between extraembryonic ectoderm and ectoplacental cone are discussed with reference to a new model for the postimplantation trophoblast lineage in the mouse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app