Add like
Add dislike
Add to saved papers

UV-C side-emitting optical fiber-based disinfection: a promising approach for infection control in tight channels.

Microbiology Spectrum 2024 April 31
The growth of pathogenic bacteria in moist and wet surfaces and tubing of medically relevant devices results in serious infections in immunocompromised patients. In this study, we investigated and demonstrated the successful implementation of a UV-C side-emitting optical fiber in disinfecting medically relevant pathogenic bacteria ( Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus [MRSA]) within tight channels of polytetrafluoroethylene (PTFE). PTFE is a commonly used material both in point-of-use (POU) water treatment technologies and medical devices (dental unit water line [DUWL], endoscope). For a 1-m-long PTFE channel, up to ≥6 log inactivation was achieved using a 1-m-long UV side-emitting optical fiber (SEOF) with continuous 16-h exposure of low UV-C radiation ranging from ~0.23 to ~29.30 μW/cm2 . Furthermore, a linear model was used to calculate the inhibition zone constant (k`), which enables us to establish a correlation between UV dosage and the extent of inactivated surface area (cm2 ) for surface-bound Escherichia coli on a nutrient-rich medium. The k` value for an irradiance ranging from ~150 to ~271.50 μW/cm2 was calculated to be 0.564 ± 0.6 cm·cm2 /mJ. This study demonstrated the efficacy of SEOFs for disinfection of medically relevant microorganisms present in medically and domestically relevant tight channels. The impact of the results in this study extends to the optimization of operational efficiency in pre-existing UV surface disinfection setups that currently operate at UV dosages exceeding the optimal levels.IMPORTANCEGermicidal UV radiation has gained global recognition for its effectiveness in water and surface disinfection. Recently, various works have illustrated the benefit of using UV-C side-emitting optical fibers (SEOFs) for the disinfection of tight polytetrafluoroethylene (PTFE) channels. This study now demonstrates its impact for disinfection of medically relevant organisms and introduces critical design calculations needed for its implementation. The flexible geometry and controlled emission of light in these UV-SEOFs make them ideal for light distribution in tight channels. Moreover, the results presented in this manuscript provide a novel framework that can be employed in various applications, addressing microbial contamination and the disinfection of tight channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app