Add like
Add dislike
Add to saved papers

Regulating the chiroptical expression of aggregated solvophobic core by solvophilic segments.

The investigation of chiral supramolecular stacking is of essential significance for the understanding of the origin of homochirality in nature. Unlike structurally well-defined amphiphilic liposomes, it remains unclear whether the solvophilic segments of the amphiphilic block copolymer play a decisive role in the construction of asymmetric superstructures. Herein, we present insights into the stacking patterns and morphological regulation in azobenzene-containing block copolymer assemblies solely by modulating the solvophilic chain length. The solvophilic poly(methacrylic acid) (PMAA) segments of different molecular weights could cause multi-mode chirality inversions involving stacking transitions between intra-chain π-π stacking, inter-chain H-aggregation and J-aggregation. Furthermore, the length of the solvophilic PMAA also affects the morphology of the chiral supramolecular assemblies; rice grain-like micelles, worms, nanofibers, floccules and lamellae could be prepared at different solvophilic-solvophobic balance. The comprehensive mechanism was collectively revealed by utilizing various measurement methods, such as including circular dichroism (CD), small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). This study highlights the critical importance of fully dissolved solvophilic segments for the chiroptical regulation of the aggregated core, providing new insights into the arrangement of chiral supramolecular structures in polymer systems. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app