Add like
Add dislike
Add to saved papers

Advancement of Langmuir probe-based laser photo-detachment technique for negative ion density measurement in a high-power helicon plasma source.

In the pursuit of precise diagnostics for measuring negative ion density in a helicon plasma source (HPS), a new approach utilizing a radio frequency (RF) broadband transformer-based Langmuir probe is developed specifically for laser photo-detachment (LPD) analysis. This inductively coupled LPD technique is useful for high power RF systems in which capacitive RF noise is in the same scale as the pulsed photo-detachment signal. The signal acquired by this transformer-based probe is compared against the conventional Langmuir probe-based LPD technique, revealing a remarkable enhancement in signal fidelity through an improved signal-to-noise ratio (SNR) achieved by the RF broadband transformer methodology. In addition, the localized hydrogen negative ion density measurements obtained through this probe are harmoniously aligned with the line-averaged negative ion density derived from the cavity ringdown spectroscopy (CRDS) technique. These concurrence measurements highlight the RF broadband transformer-based approach's accuracy in capturing localized negative ion density during helicon mode operation in an HPS setup. Furthermore, the correlation of negative ion density values with RF input exhibits a consistent trend in tandem with background plasma density. Notably, both CRDS and LPD measurements ascertain negative ion densities ranging from ∼5 to 6×1016 m-3 under an RF power of 500-700 W and a pressure of 8 × 10-3 mbar, all under the influence of a 55 G axial magnetic field. These specific parameters represent the optimal operational configuration for effective negative ion production with the present experimental HPS setup. Due to its better SNR, the RF broadband transformer-based Langmuir probe emerges as a useful tool for LPD diagnostics, particularly in the presence of pervasive RF noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app