Add like
Add dislike
Add to saved papers

Transient receptor potential vanilloid 4 channel inhibition attenuates lung ischemia-reperfusion injury in a porcine lung transplant model.

OBJECTIVE: Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel important in many physiological and pathophysiological processes, including pulmonary disease. Using a murine model, we previously demonstrated that TRPV4 mediates lung ischemia-reperfusion injury, the major cause of primary graft dysfunction after transplant. The current study tests the hypothesis that treatment with a TRPV4 inhibitor will attenuate lung ischemia-reperfusion injury in a clinically relevant porcine lung transplant model.

METHODS: A porcine left-lung transplant model was used. Animals were randomized to 2 treatment groups (n = 5/group): vehicle or GSK2193874 (selective TRPV4 inhibitor). Donor lungs underwent 30 minutes of warm ischemia and 24 hours of cold preservation before left lung allotransplantation and 4 hours of reperfusion. Vehicle or GSK2193874 (1 mg/kg) was administered to the recipient as a systemic infusion after recipient lung explant. Lung function, injury, and inflammatory biomarkers were compared.

RESULTS: After transplant, left lung oxygenation was significantly improved in the TRPV4 inhibitor group after 3 and 4 hours of reperfusion. Lung histology scores and edema were significantly improved, and neutrophil infiltration was significantly reduced in the TRPV4 inhibitor group. TRPV4 inhibitor-treated recipients had significantly reduced expression of interleukin-8, high mobility group box 1, P-selectin, and tight junction proteins (occludin, claudin-5, and zonula occludens-1) in bronchoalveolar lavage fluid as well as reduced angiopoietin-2 in plasma, all indicative of preservation of endothelial barrier function.

CONCLUSIONS: Treatment of lung transplant recipients with TRPV4 inhibitor significantly improves lung function and attenuates ischemia-reperfusion injury. Thus, selective TRPV4 inhibition may be a promising therapeutic strategy to prevent primary graft dysfunction after transplant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app