Add like
Add dislike
Add to saved papers

Biomaterial-based scaffolds for direct in situ programming of tumor-infiltrating T lymphocytes.

Adoptive cell therapy with tumor-infiltrating T cells (TILs) has generated exciting clinical trial results for the treatment of unresectable solid tumors. However, solid tumors remain difficult targets for adoptively transferred T cells, due in part to poor migration of TILs to the tumor, physical barriers to infiltration, and active suppression of TILs by the tumor. Furthermore, a highly skilled team is required to obtain tumor tissue, isolate and expand the TILs ex vivo, and reinfuse them into the patient, which drives up costs and limits patient access. Here, we describe a cell-free polymer implant designed to recruit, genetically reprogram and expand host T cells at tumor lesions in situ. Importantly, the scaffold can be fabricated on a large scale and is stable to lyophilization. Using a mouse breast cancer model, we show that the implants quickly and efficiently amass cancer-specific host lymphocytes at the tumor site in quantities sufficient to bring about long-term tumor regression. Given that surgical care is the mainstay of cancer treatment for many patients, this technology could be easily implemented in a clinical setting as an add-on to surgery for solid tumors. Furthermore, the approach could be broadened to recruit and genetically reprogram other therapeutically desirable host cells, such as macrophages, natural killer cells or dendritic cells, potentially boosting the antitumor effectiveness of the implant even more.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app