Add like
Add dislike
Add to saved papers

X-ray Induced Electric Currents in Anodized Ta 2 O 5 : Towards a Large-Area Thin-Film Sensor.

Sensors 2024 April 17
PURPOSE: We investigated the characteristics of radiation-induced current in nano-porous pellet and thin-film anodized tantalum exposed to kVp X-ray beams. We aim at developing a large area (≫cm2 ) thin-film radiation sensor for medical, national security and space applications.

METHODS: Large area (few cm2 ) micro-thin Ta foils were anodized and coated with a counter electrode made of conductive polymer. In addition, several types of commercial electrolytic porous tantalum capacitors were assembled and prepared for irradiation with kVp X-rays. We measured dark current (leakage) as well as transient radiation-induced currents as a function of external voltage bias.

RESULTS: Large transient currents (up to 50 nA) under X-ray irradiation (dose rate of about 3 cGy/s) were measured in Ta2 O5 capacitors. Small nano-porous Ta and large-area flat Ta foil capacitors show similar current-voltage characteristic curve after accounting for different X-ray attenuation in capacitor geometry. The signal is larger for thicker capacitor oxide. A non-negligible signal for null external voltage bias is observed, which is explained by fast electron production in Ta foils.

CONCLUSIONS: Anodized tantalum is a promising material for use in large-area, self-powered radiation sensors for X-ray detection and for energy harvesting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app