Journal Article
Review
Add like
Add dislike
Add to saved papers

Hydrogen-Bond Acidic Materials in Acoustic Wave Sensors for Nerve Chemical Warfare Agents' Detection.

Sensors 2024 April 13
The latest trends in the field of the on-site detection of chemical warfare agents (CWAs) involve increasing the availability of point detectors to enhance the operational awareness of commanders and soldiers. Among the intensively developed concepts aimed at meeting these requirements, wearable detectors, gas analyzers as equipment for micro- and mini-class unmanned aerial vehicles (UAVs), and distributed sensor networks can be mentioned. One of the analytical techniques well suited for use in this field is surface acoustic wave sensors, which can be utilized to construct lightweight, inexpensive, and undemanding gas analyzers for detecting CWAs. This review focuses on the intensively researched and developed variant of this technique, utilizing absorptive sensor layers dedicated for nerve CWAs' detection. The paper describes the mechanism of the specific interaction occurring between the target analyte and the sensing layer, which serves as the foundation for their selective detection. The main section of this paper includes a chronological review of individual achievements in the field, largely based on the peer-reviewed scientific literature dating back to the mid-1980s to the present day. The final section presents conclusions regarding the prospects for the development of this analytical technique in the targeted application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app