Add like
Add dislike
Add to saved papers

Lithium Niobate Electro-Optic Modulation Device without an Overlay Layer Based on Bound States in the Continuum.

Micromachines 2024 April 13
Electro-optic modulation devices are essential components in the field of integrated optical chips. High-speed, low-loss electro-optic modulation devices represent a key focus for future developments in integrated optical chip technology, and they have seen significant advancements in both commercial and laboratory settings in recent years. Current electro-optic modulation devices typically employ architectures based on thin-film lithium niobate (TFLN), traveling-wave electrodes, and impedance-matching layers, which still suffer from transmission losses and overall design limitations. In this paper, we demonstrate a lithium niobate electro-optic modulation device based on bound states in the continuum, featuring a non-overlay structure. This device exhibits a transmission loss of approximately 1.3 dB/cm, a modulation bandwidth of up to 9.2 GHz, and a minimum half-wave voltage of only 3.3 V.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app