Add like
Add dislike
Add to saved papers

Euchromatin histone-lysine N-methyltransferase 2 regulates the expression of potassium-sodium-activated channel subfamily T member 1 in primary sensory neurons and contributes to remifentanil-induced pain sensitivity.

Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1μg·kg-1·min-1 for 60min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app