Add like
Add dislike
Add to saved papers

Self-Encapsulation of High-Entropy Alloy Nanoparticles Inside Carbonized Wood for Highly Durable Electrocatalysis.

Advanced Materials 2024 April 27
High-entropy alloy nanoparticles (HEAs) show great potential in emerging electrocatalysis due to their combination and optimization of multiple elements. However, synthesized HEAs often exhibit a weak interface with the conductive substrate, hindering their applications in long-term catalysis and energy conversion. Herein, we report a highly active and durable electrocatalyst composed of quinary HEAs (PtNiCoFeCu) encapsulated inside the activated carbonized wood (ACW). The self-encapsulation of HEAs is achieved during Joule heating synthesis (2060 K, 2 s) where HEAs naturally nucleate at the defect sites; In the meantime, HEAs catalyze the deposition of mobile carbon atoms to form a protective few-layer carbon shell during the rapid quenching process, thus remarkably strengthening the interface stability between HEAs and ACW. As a result, the HEAs@ACW shows not only favorable activity with an overpotential of 7 mV at 10 mA cm-2 for hydrogen evolution but also negligible attenuation during a 500-h stability test, which is superior to most reported electrocatalysts. The design of self-encapsulated HEAs inside ACW provides a critical strategy to enhance both activity and stability, which is also applicable to many other energy conversion technologies. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app