Add like
Add dislike
Add to saved papers

Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers Through Controlled Tie Chain Incorporation.

Advanced Materials 2024 April 27
Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well understood strategies exist to further advance their thermoelectric performance. Here we report a new model system for better understanding the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods we study the effect of controlled incorporation of tie-chains between the crystalline domains through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810.1 S/cm, that is not accompanied by a reduction in Seebeck coefficient nor a large increase in thermal conductivity. We demonstrate respectable power factors of 172.6 µW m-1 K-2 in this model system. Our approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app