Add like
Add dislike
Add to saved papers

Influences of Heat Stress on Glutamate Transmission-Dependent Expression Levels of IL-1β and IL-18 in BV-2 Microglial Cells.

Shock 2024 April 26
OBJECTIVE: This study aimed to explore the impact of heat stress (HS) on glutamate transmission-dependent expression levels of interleukin-1β (IL-1β) and IL-18 in BV-2 microglial cells.

METHODS: BV-2 microglial cells were cultured in vitro, with cells maintained at 37 °C serving as the control. The HS group experienced incubation at 40 °C for 1 h, followed by further culturing at 37 °C for 6 or 12 h. The experimental group was pre-incubated with glutamate, the glutamate antagonist riluzole, or the mGluR5 agonist, 2-Chloro-5-hydroxyphenylglycine (CHPG), before HS. Glutamate content in BV-2 culture supernatant was assessed using colorimetric assay. Moreover, mRNA expression levels of EAAT3 and/or mGluR5 in BV-2 cells were determined via quantitative polymerase chain reaction. Interleukins (IL-1β and IL-18) in cell culture supernatant were measured using enzyme-linked immunosorbent assay. Western blot analysis was employed to assess protein levels of IL-1β and IL-18 in BV-2 cells.

RESULTS: HS induced a significant release of glutamate and increased the expression levels of mGluR5 and EAAT3 in BV-2 cells. It also triggered the expression levels and release of pro-inflammatory factors, such as IL-1β and IL-18, synergizing with the effects of glutamate treatment. Preincubation with both riluzole and CHPG significantly reduced HS-induced glutamate release and mitigated the increased expression levels and release of IL-1β and IL-18 induced by HS.

CONCLUSION: The findings confirmed that microglia could be involved in HS primarily through glutamate metabolisms, influencing the expression levels and release of IL-1β and IL-18.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app