Add like
Add dislike
Add to saved papers

Two-Dimensional SnS Mediates NiFe-LDH-Layered Electrocatalyst toward Boosting OER Activity for Water Splitting.

NiFe-layered double hydroxides (NiFe-LDHs), as promising electrocatalysts, have received significant research attention for hydrogen and oxygen generation through water splitting. However, the slow oxidation kinetics of NiFe-LDH, due to the limited number of active sites and the low conductivity, hinders the improvement of the water-splitting efficiency. Therefore, to overcome the obstacles, two-dimensional (2D) SnS was first explored to tailor the prepared NiFe-LDH via the hydrothermal method. A NiFe-LDH/SnS heterojunction is built, which is observed from the microstructural investigations. SnS incorporation could greatly improve the conductivity of the NiFe-LDH sheets, which was reflected by the reduced charge transfer resistance. Moreover, SnS layers modulated the electronic environment around the active sites, favoring the adsorption of intermediates during the oxygen evolution reaction (OER) process, which was verified by density functional theory calculations. A synergistic effect induced by the NiFe-LDH/SnS heterostructure promoted the OER activities in electrical, electronic, and energetic aspects. Consequently, the as-prepared NiFe-LDH/SnS electrocatalyst greatly improved the electrocatalytic performance, exhibiting 20% and 27% reductions in the overpotential and Tafel slope compared with those of pristine NiFe-LDH, respectively. The results provide a strategy for regulating NiFe-based electrocatalysts by using emerging 2D materials to enhance water-splitting efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app