Add like
Add dislike
Add to saved papers

A Novel In Vitro Pathological Model for Studying Neural Invasion in Non-Melanoma Skin Cancer.

Gels 2024 April 9
Neural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel. We recreated two vital processes of NI: a pre-invasive NI model in which hECCs were seeded on the top of the nerve-enriched stroma, and an invasive NI model in which cancer cells were immersed with the nerve in the hydrogel. Histological, histochemical and immunohistochemical analyses were performed to validate the model. Results showed that the integration of fibrin-agarose advanced hydrogel with a complete nerve structure and hECCs successfully generated an environment in which tumor cells and nerve components coexisted. Moreover, this model correctly preserved components of the neural extracellular matrix as well as allowing the proliferation and migration of cells embedded in hydrogel. All these results suggest the suitability of the model for the study of the mechanisms underlaying NI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app