Add like
Add dislike
Add to saved papers

Lateralization of cortical activity, networks, and hemodynamic lag after stroke: A resting-state fNIRS study.

Focal damage due to stroke causes widespread abnormal changes in brain function and hemispheric asymmetry. In this study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state hemoglobin data from 85 patients with subacute stroke and 26 healthy controls, to comparatively analyze the characteristics of lateralization after stroke in terms of cortical activity, functional networks, and hemodynamic lags. Higher intensity of motor cortical activity, lower hemispheric autonomy, and more abnormal hemodynamic leads or lags were found in the affected hemisphere. Lateralization metrics of the three aspects were all associated with the Fugl-Meyer score. The results of this study prove that three lateralization metrics may provide clinical reference for stroke rehabilitation. Meanwhile, the present study piloted the use of resting-state fNIRS for analyzing hemodynamic lag, demonstrating the potential of fNIRS to assess hemodynamic abnormalities in addition to the study of cortical neurological function after stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app