Add like
Add dislike
Add to saved papers

Encoding a Many-Body Potential Energy Surface into a Grid-Based Matrix Product Operator.

An efficient algorithm for compressing a given many-body potential energy surface (PES) of molecular systems into a grid-based matrix product operator (MPO) is proposed. The PES is once represented by a full-dimensional or truncated many-body expansion form, which is obtained by ab initio calculations at each grid mesh point, and then all terms in the expansion are compressed and merged into a single MPO while maintaining the bond dimension of the MPO as small as possible. It was shown that the ab initio PES of the H2 CO was compressed by more than 2 orders of magnitude in the size of the site operators without loss of accuracy. By the use of grid basis, the tensor rank of the site operators of the MPO is reduced from four to three due to the diagonal nature of the position-dependent operators on grid basis, which significantly reduces the computational cost of the tensor contractions required in the real and imaginary time evolution of the matrix product state (MPS) wave functions with the grid-based MPO (Grid-MPO) Hamiltonian. Similar to other grid-based methods, Grid-MPO is easily applicable to any kinds of potentials of molecular systems, such as analytical empirical model potentials expressed by position operators and ab initio potentials, if the values at the grid points are available. Using the Grid-MPO combined with the MPS, we calculated the time correlation function of the Eigen cation H3O+(H2O)3 to predict the infrared spectrum and compared with the experimental and the previous theoretical studies. The actual scaling with the size of systems was examined for the multidimensional Henon-Heiles Hamiltonian. It was shown that the method is considerably accelerated by the graphic processing unit (GPU) because the sizes of site operators were kept small and all tensors were able to be stored on the VRAM of a GPU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app