Journal Article
Review
Add like
Add dislike
Add to saved papers

Enabling Applications of Electromagnetic Waves at 0.3-1.0 THz Using Silicon Electronic Integrated Circuits.

ACS Photonics 2024 April 18
Over the past 15 years, the output power of silicon submillimeter-wave electronics has increased by a factor greater than 1000 reaching -3.9 dBm at 440 GHz for a single unit in CMOS and -10.7 dBm at 1.01 THz for a 42-element array in SiGe BiCMOS. The smallest power of a 1 kHz bandwidth signal at 420 GHz that can be detected has improved by 100 million times. These and the expected improvements from the ongoing activities should be sufficient to support high resolution imaging with a range of up to several hundred meters, gas sensing up to ∼1 THz, and communication over ∼1000 m. The silicon IC technologies enable integration of complex systems into a small form factor and reduction of manufacturing cost. When broad deployment of submillimeter wave systems for everyday life applications becomes necessary, the silicon IC infrastructure will be the most capable to support the high-volume manufacturing need.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app