Add like
Add dislike
Add to saved papers

Changes in total charge on spike protein of SARS-CoV-2 in emerging lineages.

MOTIVATION: Charged amino acid residues on the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been shown to influence its binding to different cell surface receptors, its non-specific electrostatic interactions with the environment, and its structural stability and conformation. It is therefore important to obtain a good understanding of amino acid mutations that affect the total charge on the spike protein which have arisen across different SARS-CoV-2 lineages during the course of the virus' evolution.

RESULTS: We analyse the change in the number of ionizable amino acids and the corresponding total charge on the spike proteins of almost 2200 SARS-CoV-2 lineages that have emerged over the span of the pandemic. Our results show that the previously observed trend toward an increase in the positive charge on the spike protein of SARS-CoV-2 variants of concern has essentially stopped with the emergence of the early omicron variants. Furthermore, recently emerged lineages show a greater diversity in terms of their composition of ionizable amino acids. We also demonstrate that the patterns of change in the number of ionizable amino acids on the spike protein are characteristic of related lineages within the broader clade division of the SARS-CoV-2 phylogenetic tree. Due to the ubiquity of electrostatic interactions in the biological environment, our findings are relevant for a broad range of studies dealing with the structural stability of SARS-CoV-2 and its interactions with the environment.

AVAILABILITY AND IMPLEMENTATION: The data underlying the article are available in the Supplementary material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app