Add like
Add dislike
Add to saved papers

Study of mechanical property and biocompatibility of graphene oxide/MEO 2 MA hydrogel scaffold for wound healing application.

Wound healing is a complex biological process crucial for restoring tissue integrity and preventing infections. The development of advanced materials that facilitate and expedite the wound-healing process has been a focal point in biomedical research. In this study, we aimed to enhance the wound-healing potential of hydrogel scaffolds by incorporating graphene oxide and poly (ethylene glycol) methyl ether methacrylate (MEO2 MA). Various masses of graphene oxide were added to MEO2 MA hydrogels via free radical polymerisation. Comprehensive characterizations, encompassing mechanical properties, and biocompatibility assays, were conducted to evaluate the hydrogels' suitability for wound healing. In vitro experiments demonstrated that the graphene oxide-based hydrogels exhibited a proper swelling degree and tensile strength, responding effectively to moisture conditions and adhesiveness for wound healing. Notably, the tensile strength significantly increased to 626 kPa in the graphene oxide hydrogels. Biocompatibility assessments revealed that the graphene oxide/MEO2 MA hydrogels were non-toxic to human dermal fibroblast cell growth, with no significant difference in cell viability observed in the graphene oxide/MEO2 MA hydrogel (H-HG) group. In a rat skin experiment, the wound-healing rate of the hydrogel incorporating graphene oxide surpassed that of the pristine hydrogel after a 15-day treatment, achieving over 95% wound closure in the H-HG group. The histopathological analysis further supported the efficacy of the H-HG hydrogel dressing in promoting more effective tissue regeneration. These results collectively highlight the potential of the graphene oxide/MEO2 MA hydrogel scaffold as a promising dressing for medical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app