Add like
Add dislike
Add to saved papers

DRSPRING: Graph convolutional network (GCN)-Based drug synergy prediction utilizing drug-induced gene expression profile.

Great efforts have been made over the years to identify novel drug pairs with synergistic effects. Although numerous computational approaches have been proposed to analyze diverse types of biological big data, the pharmacogenomic profiles, presumably the most direct proxy of drug effects, have been rarely used due to the data sparsity problem. In this study, we developed a composite deep-learning-based model that predicts the drug synergy effect utilizing pharmacogenomic profiles as well as molecular properties. Graph convolutional network (GCN) was used to represent and integrate the chemical structure, genetic interactions, drug-target information, and gene expression profiles of cell lines. Insufficient amount of pharmacogenomic data, i.e., drug-induced expression profiles from the LINCS project, was resolved by augmenting the data with the predicted profiles. Our method learned and predicted the Loewe synergy score in the DrugComb database and achieved a better or comparable performance compared to other published methods in a benchmark test. We also investigated contribution of various input features, which highlighted the value of basal gene expression and pharmacogenomic profiles of each cell line. Importantly, DRSPRING (DRug Synergy PRediction by INtegrated GCN) can be applied to any drug pairs and any cell lines, greatly expanding its applicability compared to previous methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app