Add like
Add dislike
Add to saved papers

The impact of phospholipids with high transition temperature to enhance Redox-Sensitive liposomal doxorubicin efficacy in colon carcinoma model.

In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000 -DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app