Journal Article
Review
Add like
Add dislike
Add to saved papers

Gene editing as a therapeutic strategy for spinocerebellar ataxia type-3.

Revue Neurologique 2024 April 5
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is a neurodegenerative disease caused by expanded polyglutamine repeats in exon 10 of the ataxin-3 gene, ATXN3. The accumulation of mutant ATXN3 protein leads to severe clinical manifestations and premature death. Clinically, SCA3 pathology is characterized by progressive ataxia leading to motor incoordination that may affect balance, gait and speech, and neuropathologically by a progressive degeneration of the spinal cord and cerebellum, as well as the cerebral cortex and basal ganglia. Although SCA3 is a rare disease, it is the most common autosomal dominant spinocerebellar ataxia worldwide. Its geographical distribution varies worldwide, with peak prevalence in certain regions of Brazil, Portugal and China. In 1994, the identification of the polyglutamine expansion in the ATXN3 gene made it possible not only to diagnose this pathology but also to dissect the mechanisms leading to cellular degeneration. As a monogenic disease for which only symptomatic treatment is available, the ATXN3 gene represents an attractive therapeutic target for gene editing strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app