Add like
Add dislike
Add to saved papers

Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films.

Polymers 2024 March 8
The escalating thermal power density in electronic devices necessitates advanced thermal management technologies. Polymer-based materials, prized for their electrical insulation, flexibility, light weight, and strength, are extensively used in this field. However, the inherent low thermal conductivity of polymers requires enhancement for effective heat dissipation. This work proposes a novel paradigm, emphasizing ordered structures with functional units, to create triple-level, ordered, low-filler loading of multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol)(PVA) nanofibrous films. By addressing interfacial thermal resistance through -OH groups, the coupling between polymer and MWCNT is strengthened. The triple-level ordered structure comprises aligned PVA chains, aligned MWCNTs, and aligned MWCNT/PVA composite fibers. Focusing on the filler's impact on thermal conductivity and chain orientation, the thermal transport mechanisms have been elucidated level by level. Our MWCNT/PVA composite, with lower filler loadings (10 wt.%), achieves a remarkable TC exceeding 35.4 W/(m·K), surpassing other PVA composites with filler loading below 50 wt.%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app