Add like
Add dislike
Add to saved papers

Toward Robust Self-Training Paradigm for Molecular Prediction Tasks.

Molecular prediction tasks normally demand a series of professional experiments to label the target molecule, which suffers from the limited labeled data problem. One of the semisupervised learning paradigms, known as self-training, utilizes both labeled and unlabeled data. Specifically, a teacher model is trained using labeled data and produces pseudo labels for unlabeled data. These labeled and pseudo-labeled data are then jointly used to train a student model. However, the pseudo labels generated from the teacher model are generally not sufficiently accurate. Thus, we propose a robust self-training strategy by exploring robust loss function to handle such noisy labels in two paradigms, that is, generic and adaptive. We have conducted experiments on three molecular biology prediction tasks with four backbone models to gradually evaluate the performance of the proposed robust self-training strategy. The results demonstrate that the proposed method enhances prediction performance across all tasks, notably within molecular regression tasks, where there has been an average enhancement of 41.5%. Furthermore, the visualization analysis confirms the superiority of our method. Our proposed robust self-training is a simple yet effective strategy that efficiently improves molecular biology prediction performance. It tackles the labeled data insufficient issue in molecular biology by taking advantage of both labeled and unlabeled data. Moreover, it can be easily embedded with any prediction task, which serves as a universal approach for the bioinformatics community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app