Add like
Add dislike
Add to saved papers

Ultra-low noise front-end design for smart optical sensors with high sensitivity and wide dynamic range.

Ultra-low noise is a critical component in the design of high-precision sensor front-ends. We introduced differential phase-sensitive detection (d-PSD) to mitigate both multiplicative and additive noise in optical sensors, aiming for an enhanced performance and cost-effectiveness. The d-PSD combines a capacitive transimpedance amplifier (C-TIA), a delta-sigma analog-to-digital converter (ΔΣ-ADC), and a software-based lock-in amplifier (s-LIA). The first two components utilize the DDC112 (a dual current input 20-bit ADC) for a minimal analog channel length, thus reducing noise efficiently, while the latter employs a cost-effective 32-bit microcontroller unit (MCU), the HC32F460. This approach was successfully implemented as the front-end for a smart optical sensor. Testing indicated that the sensor achieved an equivalent current noise level of 0.6 nA/√Hz, primarily attributed to the light source driver rather than the sensor's front-end circuit. The sensor exhibited an exceptional performance, with a 3σ measurement precision of 5.4 × 10-4 over a 1-second integration time and a dynamic range of 100 dB, leveraging the proposed method and design. Furthermore, the front-end of the sensor boasts a compact size, low power consumption, and affordability, making it an ideal, versatile solution for ultra-high precision, smart optical sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app