Add like
Add dislike
Add to saved papers

Effect of dapagliflozin on collectins and complement activation in plasma from patients with type 2 diabetes and albuminuria: Data from the DapKid cohort.

Immunobiology 2024 March 16
BACKGROUND: Sodium-glucose cotransporter 2 (SGLT- 2) inhibitors exert cardiovascular and kidney-protective effects in people with diabetes. Attenuation of inflammation could be important for systemic protection. The lectin pathway of complement system activation is linked to diabetic nephropathy. We hypothesized that SGLT-2 inhibitors lower the circulating level of pattern-recognition molecules of the lectin cascade and attenuate systemic complement activation.

METHODS: Analysis of paired plasma samples from the DapKid crossover intervention study where patients with type 2 diabetes mellitus (T2DM) and albuminuria were treated with dapagliflozin and placebo for 12 weeks (10 mg/day, n=36). ELISA was used to determine concentrations of collectin kidney 1 (CL-K1), collectin liver 1 (CL-L1), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), the anaphylatoxin complement factor 3a (C3a), the stable C3 split product C3dg and the membrane attack complex (sC5b-9).

RESULTS: As published before, dapagliflozin treatment lowered Hba1C from 74 (14.9) mmol/mol to 66 (13.9) mmol/mol (p<0.0001), and the urine albumin/creatinine ratio from 167.8 mg/g to 122.5 mg/g (p<0.0001). Plasma concentrations of CL-K1, CL-L1, MBL, and MASP-2 did not change significantly after dapagliflozin treatment (P>0.05) compared to placebo treatment. The plasma levels of C3a (P<0.05) and C3dg (P<0.01) increased slightly but significantly, 0.6 [0.2] units/mL and 76 [52] units/mL respectively, after dapagliflozin treatment. The C9-associated neoepitope in C5b-9 did not change in plasma concentration by dapagliflozin (P>0.05).

CONCLUSION: In patients with type 2 diabetes and albuminuria, SGLT-2 inhibition resulted in modest C3 activation in plasma, likely not driven by primary changes in circulating collectins and not resulting in changes in membrane attack complex. Based on systemic analyses, organ-specific local protective effects of gliflozins against complement activation cannot be excluded.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app