Add like
Add dislike
Add to saved papers

An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform.

Clathrin protein (CP) plays a pivotal role in numerous cellular processes, including endocytosis, signal transduction, and neuronal function. Dysregulation of CP has been associated with a spectrum of diseases. Given its involvement in various cellular functions, CP has garnered significant attention for its potential applications in drug design and medicine, ranging from targeted drug delivery to addressing viral infections, neurological disorders, and cancer. The accurate identification of CP is crucial for unraveling its function and devising novel therapeutic strategies. Computational methods offer a rapid, cost-effective, and less labor-intensive alternative to traditional identification methods, making them especially appealing for high-throughput screening. This paper introduces CL-Pred, a novel computational method for CP identification. CL-Pred leverages three feature descriptors: Dipeptide Deviation from Expected Mean (DDE), Bigram Position Specific Scoring Matrix (BiPSSM), and Position Specific Scoring Matrix-Tetra Slice-Discrete Cosine Transform (PSSM-TS-DCT). The model is trained using three classifiers: Support Vector Machine (SVM), Extremely Randomized Tree (ERT), and Light eXtreme Gradient Boosting (LiXGB). Notably, the LiXGB-based model achieves outstanding performance, demonstrating accuracies of 94.63% and 93.65% on the training and testing datasets, respectively. The proposed CL-Pred method is poised to significantly advance our comprehension of clathrin-mediated endocytosis, cellular physiology, and disease pathogenesis. Furthermore, it holds promise for identifying potential drug targets across a spectrum of diseases.Communicated by Ramaswamy H. Sarma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app