Add like
Add dislike
Add to saved papers

A novel prognostic signature of coagulation-related genes leveraged by machine learning algorithms for lung squamous cell carcinoma.

Heliyon 2024 March 31
Coagulation-related genes (CRGs) have been demonstrated to be essential for the development of certain tumors; however, little is known about CRGs in lung squamous cell carcinoma (LUSC). In this study, we adopted CRGs to construct a coagulation-related gene prognostic signature (CRGPS) using machine learning algorithms. Using a set of 92 machine learning integrated algorithms, the CRGPS was determined to be the optimal prognostic signature (median C-index = 0.600) for predicting the prognosis of an LUSC patient. The CRGPS was not only superior to traditional clinical parameters (e.g., T stage, age, and gender) and its commutative genes but also outperformed 19 preexisting prognostic signatures for LUSC on predictive accuracy. The CRGPS score was positively correlated with poor prognoses in patients with LUSC (hazard ratio > 1, p  < 0.05), indicating its suitability as a prognostic marker for this disease. The CRGPS was observed to be inversely correlated with the degree of infiltration of natural killer cells. For some tumors, patients with lower CRGPS scores are more likely to experience enhanced immunotherapy effects (area under the curve = 0.70), which implies that the CRGPS can potentially predict immunotherapy efficacy. A high CRGPS score is predictive of an LUSC patient being sensitive to several drugs. Collectively, these findings indicate that the CRGPS may be a reliable indicator of the prognoses of patients with LUSC and may be useful for the clinical management of such patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app