Add like
Add dislike
Add to saved papers

A novel radiomics nomogram based on T2-sampling perfection with application-optimized contrasts using different flip-angle evolutions (SPACE) images for predicting cochlear and vestibular endolymphatic hydrops in Meniere's disease patients.

European Radiology 2024 March 9
OBJECTIVES: To construct and validate a radiomics nomogram based on T2-sampling perfection with application-optimized contrasts using different flip-angle evolutions (SPACE) images for predicting cochlear and vestibular endolymphatic hydrops (EH) in Meniere's disease patients.

METHODS: A total of 156 patients (312 affected ears) with bilateral definite Meniere's disease who underwent delayed enhancement MRI scans were enrolled in this study. All ears of the patients were divided into a training set (n = 218) and an internal validation set (n = 94). A radiomics nomogram was constructed from radiomics features extracted from the T2-SPACE images, and a radiomics score was calculated. Performance of the radiomics nomogram was assessed using receiver operating characteristics analysis.

RESULTS: Five features were selected for the construction of the cochlear radiomics nomogram, and seven features for the vestibular radiomics nomogram. The radiomics nomograms exhibited robust performance in differentiating between EH-positive and EH-negative statuses in both training and validation cohorts, with the area under the receiver operating characteristics curve values for cochlear and vestibular radiomic nomograms being 0.703 and 0.728 in the training set, and 0.718 and 0.701 in the validation set, respectively.

CONCLUSION: The novel radiomics nomograms based on T2-SPACE images were successfully constructed to predict cochlear and vestibular EH in Meniere's disease. The models showed a solid and superior performance and may play an important role in the EH prediction.

CLINICAL RELEVANCE STATEMENT: We constructed a novel radiomics nomogram, which can be a very useful tool for predicting cochlear and vestibular endolymphatic hydrops in Meniere's disease patients.

KEY POINTS: • This is the first T2-SPACE-based nomogram to predict cochlear and vestibular endolymphatic hydrops. • The nomogram is of great value to patients who are unable to undergo delayed enhancement MRI scans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app