Add like
Add dislike
Add to saved papers

Quasi-experimental methods for pharmacoepidemiology: difference-in-differences and synthetic control methods with case studies for vaccine evaluation.

Difference-in-differences and synthetic control methods have become common study designs for evaluating the effects of policy changes, including health policies. They also have potential for providing real-world effectiveness and safety evidence in pharmacoepidemiology. To effectively add to the toolkit of the field, however, designs-including both their benefits and drawbacks-must be well understood. Quasi-experimental designs provide an opportunity to estimate the average treatment effect on the treated without requiring the measurement of all possible confounding factors, and to assess population-level effects. This requires, however, other key assumptions, including the parallel trends or stable weighting assumptions, a lack of other concurrent events that could alter time trends, and an absence of contamination between exposed and unexposed units. The targeted estimands are also highly specific to the settings of the study, and combining across units or time periods can be challenging. Case studies are presented for three vaccine evaluation studies, showcasing some of these challenges and opportunities in a specific field of pharmacoepidemiology. These methods provide feasible and valuable sources of evidence in various pharmacoepidemiologic settings and can be improved through research to identify and weigh the advantages and disadvantages in those settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app