Add like
Add dislike
Add to saved papers

Structural characteristics of β-glucans from various sources and their influences on the short- and long-term starch retrogradation in wheat flour.

Beta-glucans possess the ability of retarding starch retrogradation. However, β-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of β-glucans related to the feature still remains unclear. In the study, the β-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each β-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two β-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of β-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity β-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app