Add like
Add dislike
Add to saved papers

One to twelve-month-ahead forecasting of MODIS-derived Qinghai Lake area, using neuro-fuzzy system hybridized by firefly optimization.

Lakes, as the main sources of surface water, are of great environmental and ecological importance and largely affect the climatic conditions of the surrounding areas. Lake area fluctuations are very effective on plant and animal biodiversity in the areas covered. Hence, accurate and reliable forecasts of ​lake area might provide the awareness of water and climate resources and the survival of various species dependent on area fluctuations. Using machine learning methods, the current study numerically predicted area fluctuations of ​China's largest lake, Qinghai, over 1 to 12 months ahead of lead time. To this end, Moderate Resolution Imaging Spectroradiometer (MODIS) sensor images were used to monitor the monthly changes in the area of ​the lake from 2000 to 2021. Predictive inputs included the MODIS-derived lake area time latency specified by the autocorrelation function. The data was divided into two periods of the train (initial 75%) and test (final 25%), and the input combinations were arranged so that the model in the test period could be used to predict 12 scenarios, including forecast horizons for the next 1 to 12 months. The adaptive neuro-fuzzy inference system (ANFIS) was utilized as a predictive model. The firefly algorithm (FA) was also used to optimize ANFIS and improve its accuracy, as a hybrid model ANFIS-FA. Based on evaluation criteria such as root mean square error (RMSE) (477-594 km2 ) and R2 (88-92%), the results confirmed the acceptable accuracy of the models in all forecast horizons, even long-term horizons (10 months, 11 months, and 12 months). Based on the normalized RMSE criterion (0.095-0.125), the models' performance was reported to be appropriate. Furthermore, the firefly algorithm improved the prediction accuracy of the ANFIS model by an average of 16.9%. In the inter-month survey, the models had fewer forecast errors in the dry months (February-March) than in the wet months (October-November). Using the current method can provide remarkable information about the future state of lakes, which is very important for managers and planners of water resources, environment, and natural ecosystems. According to the results, the current approach is satisfactory in predicting MODIS-derived fluctuations of Qinghai Lake area and has research value for other lakes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app