Add like
Add dislike
Add to saved papers

Spectral Dependence of Light Exposure on Retinal Pigment Epithelium Disruption in Living Primate Retina.

PURPOSE: RPE disruption with light exposures below or close to the American National Standards Institute (ANSI) photochemical maximum permissible exposure (MPE) have been observed, but these findings were limited to two wavelengths. We have extended the measurements across the visible spectrum.

METHODS: Retinal imaging with fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) was used to provide an in vivo measure of RPE disruption at a cellular level. The threshold retinal radiant exposures (RREs) for RPE disruption (localized detectable change in the fluorescence image) were determined at 460, 476, 488, 530, 543, 561, 594, 632, and 671 nm (uniform 0.5° square exposure) using multiples locations in 4 macaques.

RESULTS: FAOSLO is sensitive in detecting RPE disruption. The visible light action spectrum dependence for RPE disruption with continuous wave (CW) extended field exposures was determined. It has a shallower slope than the current ANSI blue-light hazard MPE. At all wavelengths beyond 530 nm, the disruption threshold is below the ANSI blue-light hazard MPE. There is reciprocity of exposure irradiance and duration for exposures at 460 and 594 nm.

CONCLUSIONS: We measured with FAOSLO the action spectrum dependence for photochemical RPE disruption across the visible light spectrum. Using this in vivo measure of phototoxicity provided by FAOSLO, we find that thresholds are lower than previously measured. The wavelength dependence in our data is considerably shallower than the spectral dependence of the traditional ANSI blue-light hazard, emphasizing the need for more caution with increasing wavelength than expected.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app