Add like
Add dislike
Add to saved papers

Mid-infrared Ring Interband Cascade Laser: Operation at the Standard Quantum Limit.

ACS Photonics 2024 Februrary 22
Many precision applications in the mid-infrared spectral range have strong constraints based on quantum effects that are expressed in particular noise characteristics. They limit, e.g., sensitivity and resolution of mid-infrared imaging and spectroscopic systems as well as the bit-error rate in optical free-space communication. Interband cascade lasers (ICLs) are a class of mid-infrared lasers exploiting interband transitions in type-II band alignment geometry. They are currently gaining significant importance for mid-infrared applications from < 3 to > 6 μm wavelength, enabled by novel types of high-performance ICLs such as ring-cavity devices. Their noise behavior is an important feature that still needs to be thoroughly analyzed, including its potential reduction with respect to the shot-noise limit. In this work, we provide a comprehensive characterization of λ = 3.8 μm-emitting, continuous-wave ring ICLs operating at room temperature. It is based on an in-depth study of their main physical intensity noise features such as their bias-dependent intensity noise power spectral density and relative intensity noise. We obtained shot-noise-limited statistics for Fourier frequencies above 100 kHz. This is an important result for precision applications, e.g., interferometry or advanced spectroscopy, which benefit from exploiting the advantage of using such a shot-noise-limited source, enhancing the setup sensitivity. Moreover, it is an important feature for novel quantum optics schemes, including testing specific light states below the shot-noise level, such as squeezed states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app