Journal Article
Review
Add like
Add dislike
Add to saved papers

AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle.

Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases, hypoxia, nitric oxide (NO) and bioactive lipids that may be involved in the regulation of skeletal muscle glucose uptake.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app