Add like
Add dislike
Add to saved papers

Brain injury drives optic glioma formation through neuron-glia signaling.

Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1β release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1β or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app