Add like
Add dislike
Add to saved papers

Functional Bi 2 O 3 /Gd 2 O 3 Silica-Coated Structures for Improvement of Early Age and Radiation Shielding Performance of Cement Pastes.

Nanomaterials 2024 January 13
This study presents a new approach towards the production of sol-gel silica-coated Bi2 O3 /Gd2 O3 cement additives towards the improvement of early mechanical performance and radiation attenuation. Two types of silica coatings, which varied in synthesis method and morphology, were used to coat Bi2 O3 /Gd2 O3 structures and evaluated as a cement filler in Portland cement pastes. Isothermal calorimetry studies and early strength evaluations confirmed that both proposed coating types can overcome retarded cement hydration process, attributed to Bi2 O3 presence, resulting in improved one day compressive strength by 300% and 251% (depending on coating method) when compared to paste containing pristine Bi2 O3 and Gd2 O3 particles. Moreover, depending on the type of chosen coating type, various rheological performances of cement pastes can be achieved. Thanks to the proposed combination of materials, both gamma-rays and slow neutron attenuation in cement pastes can be simultaneously improved. The introduction of silica coating resulted in an increment of the gamma-ray and neutron shielding thanks to the increased probability of radiation interaction. Along with the positive early age effects of the synthesized structures, the 28 day mechanical performance of cement pastes was not suppressed, and was found to be comparable to that of the control specimen. As an outcome, silica-coated structures can be successfully used in radiation-shielding cement-based composites, e.g. with demanding early age performances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app