Journal Article
Review
Add like
Add dislike
Add to saved papers

Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma.

Hepatocellular carcinoma is the prevailing malignant neoplasm affecting the liver, often diagnosed at an advanced stage and associated with an unfavorable overall prognosis. Sorafenib and Lenvatinib have emerged as first-line therapeutic drugs for advanced hepatocellular carcinoma, improving the prognosis for these patients. Nevertheless, the issue of tyrosine kinase inhibitor (TKI) resistance poses a substantial obstacle in the management of advanced hepatocellular carcinoma. The pathogenesis and advancement of hepatocellular carcinoma exhibit a close association with metabolic reprogramming, yet the attention given to lipid metabolism dysregulation in hepatocellular carcinoma development remains relatively restricted. This review summarizes the potential significance and research progress of lipid metabolism dysfunction in Sorafenib and Lenvatinib resistance in hepatocellular carcinoma. Targeting hepatocellular carcinoma lipid metabolism holds promising potential as an effective strategy to overcome hepatocellular carcinoma drug resistance in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app