Add like
Add dislike
Add to saved papers

Undepleted direct laser acceleration.

Science Advances 2024 January 13
Intense lasers enable generating high-energy particle beams in university-scale laboratories. With the direct laser acceleration (DLA) method, the leading part of the laser pulse ionizes the target material and forms a positively charged ion plasma channel into which electrons are injected and accelerated. The high energy conversion efficiency of DLA makes it ideal for generating large numbers of photonuclear reactions. In this work, we reveal that, for efficient DLA to prevail, a target material of sufficiently high atomic number is required to maintain the injection of ionization electrons at the peak intensity of the pulse when the DLA channel is already formed. We demonstrate experimentally and numerically that, when the atomic number is too low, the target is depleted of its ionization electrons prematurely. Applying this understanding to multi-petawatt laser experiments is expected to result in increased neutron yields, a perquisite for a wide range of research and applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app