Add like
Add dislike
Add to saved papers

Phytostabilization of metal(loid)s by ten emergent macrophytes following a 90-day exposure to industrially contaminated groundwater.

New Biotechnology 2023 December 20
Better understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains. Plants exposed to the polluted water generally showed similar or reduced aerial biomass compared to the controls, except for C. riparia. This species, along with M. aquatica, exhibited improved biomass after bioaugmentation. Phytoremediation mechanisms accounted for more than 60% of As, Cd, Cu, Ni, and Pb removal, whilst abiotic mechanisms contributed to ~80% removal of Fe and Zn. Concentrations of metal(loid)s in the roots were generally between 10-100 times higher than in the aerial parts. The macrophytes in this work can be considered "underground attenuators", more appropriate for rhizostabilization strategies, especially L. salicaria, M. aquatica, S. holoschoenus, and T. angustifolia. For I. pseudacorus, C. longus, and C. riparia; harvesting the aerial parts could be a complementary phytoextraction approach to further remove Pb and Zn. Of all the plants, S. holoschoenus showed the best balance between biomass production and uptake of multiple metal(loid)s. Results also suggest that multiple phytostrategies may be possible for the same plant depending on the final remedial aim. Phytobial approaches need to be further assessed for each macrophyte species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app