Add like
Add dislike
Add to saved papers

Insights into Genomic Features and Potential Biotechnological Applications of Bacillus halotolerans Strain HGR5.

Algeria is one of the wealthiest countries in terms of hydrothermal sources, with more than two hundred hot springs. However, diverse and little-described microbial communities colonize these habitats, making them an intriguing research subject. This work reports the isolation of bacteria from two hot springs water samples in northeastern Algeria, evaluating their enzymatic activities and effect on plant pathogens. Out of the obtained 72 bacterial isolates and based on the 16S rRNA gene sequence analysis, the strain HGR5 belonging to Bacillus halotolerans had the most interesting activity profile. Interestingly, HGR5 was substantially active against Fusarium graminearum, Phytophthora infestans , and Alternaria alternata . Furthermore, this strain presented a high ability to degrade casein, Tween 80, starch, chitin, cellulose, and xylan. The genome sequence of HGR5 allowed taxonomic validation and screening of specific genetic traits, determining its antagonistic and enzymatic activities. Genome mining revealed that strain HGR5 encloses several secondary metabolite biosynthetic gene clusters (SM-BGCs) involved in metabolite production with antimicrobial properties. Thus, antimicrobial metabolites included bacillaene, fengycin, laterocidine, bacilysin, subtilosin, bacillibactin, surfactin, myxovirescin, dumulmycin, and elansolid A1. HGR5 strain genome was also mined for CAZymes associated with antifungal activity. Finally, the HGR5 strain exhibited the capacity to degrade polycaprolactone (PCL), a model substrate for polyester biodegradation. Overall, these results suggest that this strain may be a promising novel biocontrol agent with interesting plastic-degradation capability, opening the possibilities of its use in various biotechnological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app