Add like
Add dislike
Add to saved papers

Tuning the electronic and optical properties of small organic acenedithiophene molecular crystals for photovoltaic applications: First principles calculations.

Periodic density functional theory was employed to investigate the impact of chemical modifications on the properties of π-conjugated acenedithiophene molecular crystals. Here, we highlight the importance of the β-methylthionation effect, the position of the sulfur atoms of the thiacycle group and their size, and the number of central benzene rings in the chemical modification strategy. Our results show that the introduction of the methylthio groups at the β-positions of the thiophene and the additional benzene ring at the center of the BDT crystal structure are a promising strategy to improve the performance of organic semiconductors, as observed experimentally. We found that β-MT-ADT exhibits large charge carrier mobility, which is in good agreement with the experimental results and comparable to that of rubrene. In addition, the electronic and optical properties of these ambipolar materials suggest promising performances with β-MT-ADT > ADT >β-MT-NDT > NDT > BEDT-BDT >β-MT-BDT > BDT. Moreover, functionalization with thiacycle-fused sulfur atoms of different sizes and numbers improve the properties of BDT but is still less efficient than the methylthionation effect. Overall, our findings suggest a promising molecular modification strategy for possibly high performance ambipolar organic semiconducting materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app