Add like
Add dislike
Add to saved papers

Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia.

Molecular Neurobiology 2023 November 7
Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app