Add like
Add dislike
Add to saved papers

Enterococcus faecalis suppresses Staphylococcus aureus -induced NETosis and promotes bacterial survival in polymicrobial infections.

Enterococcus faecalis is an opportunistic pathogen that is frequently co-isolated with other microbes in wound infections. While E. faecalis can subvert the host immune response and promote the survival of other microbes via interbacterial synergy, little is known about the impact of E. faecalis -mediated immune suppression on co-infecting microbes. We hypothesized that E. faecalis can attenuate neutrophil-mediated responses in mixed-species infection to promote survival of the co-infecting species. We found that neutrophils control E. faecalis infection via phagocytosis, ROS production, and degranulation of azurophilic granules, but it does not trigger neutrophil extracellular trap formation (NETosis). However, E. faecalis attenuates Staphylococcus aureus -induced NETosis in polymicrobial infection by interfering with citrullination of histone, suggesting E. faecalis can actively suppress NETosis in neutrophils. Residual S. aureus -induced NETs that remain during co-infection do not impact E. faecalis , further suggesting that E. faecalis possess mechanisms to evade or survive NET-associated killing mechanisms. E. faecalis -driven reduction of NETosis corresponds with higher S. aureus survival, indicating that this immunomodulating effect could be a risk factor in promoting the virulence polymicrobial infection. These findings highlight the complexity of the immune response to polymicrobial infections and suggest that attenuated pathogen-specific immune responses contribute to pathogenesis in the mammalian host.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app