Add like
Add dislike
Add to saved papers

An in vitro dynamic bioreactor model for evaluating antimicrobial effectiveness on periodontal polymicrobial biofilms: a proof-of-concept study.

Journal of Periodontology 2023 September 20
BACKGROUND: The aim of this study was to investigate an in vitro dynamic bioreactor model by evaluating the antimicrobial effect of clinically relevant amoxicillin doses on polymicrobial microcosm biofilms derived from subgingival plaque.

METHODS: Biofilms from pooled subgingival plaque were grown for 108  hours in control and experimental dynamic biofilm reactors. Amoxicillin was subsequently infused into the experimental reactor to simulate the pharmacokinetic profile of a standard 500 mg thrice-daily dosing regimen over 5 days and biofilms were assessed by live/dead staining, scanning electron microscopy, and quantitative polymerase chain reaction.

RESULTS: Following establishment of the oral microcosm biofilms, confocal imaging analysis showed a significant increase in dead bacteria at 8 hours (p = 0.0095), 48 hours (p = 0.0070), 96 hours (p = 0.0140), and 120 hours (p < 0.0001) in the amoxicillin-treated biofilms compared to the control biofilms. Nevertheless, viable bacteria remained in the center of the biofilm at all timepoints. Significant reductions/elimination in Campylobacter rectus, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Peptostreptococcus anaerobius was observed among the amoxicillin-treated biofilms at the 96 and 120 hour timepoints.

CONCLUSION: A novel in vitro dynamic model of oral microcosm biofilms was effective in modeling the antimicrobial effect of a pharmacokinetically simulated clinically relevant dose of amoxicillin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app