Add like
Add dislike
Add to saved papers

Hydrophobic, Thermal Shock-and-Corrosion-Resistant XSBR Latex-Modified Lightweight Class G Cement Composites in Geothermal Well Energy Storage Systems.

Materials 2023 August 25
Energy losses can be significantly reduced if thermally insulating cement is used for energy storage and recovery. The thermal conductivity (TC) of the currently used cement is between 1 and 1.2 W/mK. In this study we assessed the ability of polystyrene (PS)-polybutadiene (PB)-polyacrylic acid (PAA) terpolymer (cross-linked styrene-butadiene rubber, XSBR) latex to improve thermal insulating properties and thermal shock (TS) resistance of class G ordinary Portland cement (OPC) and fly ash cenosphere (FCSs) composites in the temperature range of 100-175 °C. The composites autoclaved at 100 °C were subjected to three cycles, one cycle: 175 °C heat → 25 °C water quenching). In hydrothermal and thermal (TS) environments at elevated temperatures in cement slurries the XSBR latex formed acrylic calcium complexes through acid-base reactions, and the number of such complexes increased at higher temperatures due to the XSBR degradation with formation of additional acrylic groups. As a result, these complexes offered the following five advanced properties to the OPC-based composites: (1) enhanced hydrophobicity; (2) decreased water-fillable porosity; (3) reduced TC for water-saturated composites; (4) minimized loss of compressive strength, Young's modulus, and compressive fracture toughness after TS; and (5) abated pozzolanic activity of FCSs, which allowed FCSs to persist as thermal insulators under strongly alkaline conditions of cement slurries. Additionally, XSBR-modified slurries possessed improved workability and decreased slurry density due to the air-entraining effect of latex, which resulted in further improvement of thermal insulation performance of the modified composites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app